ποΈ VisΓ£o Geral da Arquitetura
π― Objetivos de Design
- π Escalabilidade: Suporte a mΓΊltiplas instΓ’ncias e processamento paralelo
- π§ Manutenibilidade: CΓ³digo limpo, bem estruturado e documentado
- π Observabilidade: MΓ©tricas, logs e alertas centralizados
- π SeguranΓ§a: AutenticaΓ§Γ£o JWT e autorizaΓ§Γ£o baseada em roles
- π Performance: Processamento otimizado com cache e async
- π Flexibilidade: Componentes desacoplados e configurΓ‘veis
ποΈ PrincΓpios Arquiteturais
1. Separation of Concerns
Cada mΓ³dulo tem responsabilidade ΓΊnica e bem definida:
- Preprocessing: PreparaΓ§Γ£o e otimizaΓ§Γ£o de imagens
- Detection: IdentificaΓ§Γ£o de objetos via YOLO
- OCR: ExtraΓ§Γ£o de texto das regiΓ΅es detectadas
- Integration: ConsolidaΓ§Γ£o e validaΓ§Γ£o dos resultados
2. Dependency Injection
InversΓ£o de controle para facilitar testes e manutenΓ§Γ£o:
class VisionPipeline:
def __init__(self, config: Dict[str, Any]):
self.preprocessor = ImagePreprocessor(config['preprocessor'])
self.detector = YOLODetector(config['detector'])
self.text_extractor = TextExtractor(config['ocr'])
3. Event-Driven Architecture
ComunicaΓ§Γ£o assΓncrona entre componentes:
- MΓ©tricas: Coleta automΓ‘tica de performance
- Alertas: NotificaΓ§Γ΅es baseadas em thresholds
- Logs: Rastreamento de operaΓ§Γ΅es
4. Fail-Fast Strategy
ValidaΓ§Γ£o precoce e tratamento robusto de erros:
- ValidaΓ§Γ£o de entrada no nΓvel da API
- Fallbacks para componentes crΓticos
- Logs detalhados para debugging
ποΈ Arquitetura em Camadas
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β PRESENTATION LAYER β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β FastAPI β β Dashboard β β Swagger β β
β β Server β β Web β β Docs β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
βββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββΌββββββββββββββββββββββββββββββββββββββββ
β BUSINESS LAYER β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β Vision β β Pipeline β β Monitoring β β
β β Pipeline β β Manager β β System β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
βββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββΌββββββββββββββββββββββββββββββββββββββββ
β CORE LAYER β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β βPreprocessor β β YOLO β β OCR β β
β β β β Detector β β Engine β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
βββββββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββββ
β
βββββββββββββββββββββββΌββββββββββββββββββββββββββββββββββββββββ
β INFRASTRUCTURE LAYER β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
β β PostgreSQL β β Redis β β Storage β β
β β Database β β Cache β β Service β β
β βββββββββββββββ βββββββββββββββ βββββββββββββββ β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
π Fluxo de Dados
1. Processamento de Imagem
sequenceDiagram
participant Client
participant API
participant Pipeline
participant Preprocessor
participant Detector
participant OCR
participant Database
Client->>API: Upload Image
API->>Pipeline: Process Request
Pipeline->>Preprocessor: Preprocess Image
Preprocessor-->>Pipeline: Optimized Image
Pipeline->>Detector: Detect Objects
Detector-->>Pipeline: Detections
Pipeline->>OCR: Extract Text
OCR-->>Pipeline: Text Results
Pipeline->>Pipeline: Integrate Results
Pipeline->>Database: Store Results
Pipeline-->>API: Processed Data
API-->>Client: Response
2. Monitoramento e MΓ©tricas
flowchart LR
subgraph Pipeline[Vision Pipeline]
P[Processing]
M[Metrics Collection]
end
subgraph Monitoring[Monitoring Stack]
Prom[Prometheus]
Graf[Grafana]
Alert[Alert Manager]
end
P --> M
M --> Prom
Prom --> Graf
Prom --> Alert
π§ Componentes Principais
Vision Pipeline
- Responsabilidade: OrquestraΓ§Γ£o do processamento
- CaracterΓsticas: Modular, configurΓ‘vel, monitorΓ‘vel
- Interfaces: REST API, WebSocket para tempo real
Image Preprocessor
- Responsabilidade: OtimizaΓ§Γ£o de imagens
- OperaΓ§Γ΅es: Redimensionamento, reduΓ§Γ£o de ruΓdo, contraste
- ConfiguraΓ§Γ£o: ParΓ’metros ajustΓ‘veis via config
YOLO Detector
- Responsabilidade: DetecΓ§Γ£o de objetos
- Modelo: YOLOv8 configurΓ‘vel
- Fallback: Modo simulado para desenvolvimento
Text Extractor
- Responsabilidade: ExtraΓ§Γ£o de texto via OCR
- Motores: PaddleOCR, EasyOCR, Tesseract
- Fallback: Simulador para desenvolvimento
π PadrΓ΅es de Design
Factory Pattern
class ComponentFactory:
@staticmethod
def create_preprocessor(config: Dict) -> ImagePreprocessor:
return ImagePreprocessor(config)
@staticmethod
def create_detector(config: Dict) -> YOLODetector:
return YOLODetector(config)
Strategy Pattern
class OCRStrategy(ABC):
@abstractmethod
def extract_text(self, image: np.ndarray) -> TextResult:
pass
class PaddleOCRStrategy(OCRStrategy):
def extract_text(self, image: np.ndarray) -> TextResult:
pass
Observer Pattern
class PipelineObserver:
def on_processing_start(self, image_path: str):
pass
def on_processing_complete(self, result: ProcessingResult):
pass
def on_error(self, error: Exception):
pass
π Escalabilidade
Horizontal Scaling
- API Servers: MΓΊltiplas instΓ’ncias FastAPI
- Load Balancer: DistribuiΓ§Γ£o de carga
- Shared State: Redis para cache e sessΓ΅es
Vertical Scaling
- GPU Support: AceleraΓ§Γ£o CUDA para YOLO/OCR
- Memory Optimization: Processamento em lotes
- Async Processing: OperaΓ§Γ΅es nΓ£o-bloqueantes
π SeguranΓ§a
AutenticaΓ§Γ£o
- JWT Tokens: Stateless authentication
- Refresh Tokens: RenovaΓ§Γ£o automΓ‘tica
- Role-Based Access: Controle granular de permissΓ΅es
ValidaΓ§Γ£o
- Input Validation: Pydantic models
- File Upload: ValidaΓ§Γ£o de tipos e tamanhos
- Rate Limiting: ProteΓ§Γ£o contra abuso
π Monitoramento
MΓ©tricas Coletadas
- Performance: Tempo de processamento, throughput
- Qualidade: Taxa de sucesso, precisΓ£o das detecΓ§Γ΅es
- Recursos: CPU, memΓ³ria, GPU utilization
- NegΓ³cio: Volume de imagens, tipos de detecΓ§Γ΅es
Alertas
- Performance: Tempo de resposta alto
- Disponibilidade: ServiΓ§os down
- Qualidade: Taxa de erro alta
- Recursos: Uso excessivo de CPU/memΓ³ria
π PrΓ³ximo: Diagramas da Arquitetura ou DecisΓ΅es Arquiteturais